Quick Start
Get started with DevOps AI Toolkit in minutes - deploy applications, manage policies, and remediate issues using AI-powered Kubernetes workflows through MCP.
For the easiest setup, we recommend installing the complete dot-ai stack which includes all components pre-configured. See the Stack Installation Guide.
Continue below if you want to install components individually (for non-Kubernetes setups or granular control over configuration).
Overview
What it does: DevOps AI Toolkit provides AI-powered Kubernetes deployment, remediation, policy management, and capability discovery through conversational workflows in your MCP-enabled coding agent.
Use when: You want intelligent Kubernetes operations without memorizing commands, need AI-powered troubleshooting, or want to establish governance policies across your cluster.
📖 Full Guide: See MCP Setup Guide for detailed configuration options and Tools Overview for complete feature reference.
Prerequisites
Works without AI keys:
- ✅ Shared prompts library - No API key needed, works with any MCP-enabled coding agent
For AI-powered features (deployment, remediation, patterns, policies, capabilities):
- AI Model API key - Required for AI analysis and intelligent recommendations
- Multiple AI models supported - see AI Model Configuration for all options and setup
- Quick setup: Claude (default) -
export ANTHROPIC_API_KEY=your_key_here
For Kubernetes deployment recommendations:
- kubectl configured with cluster access
- Verify cluster access with:
kubectl get nodes - Should show your cluster nodes without authentication errors
- Verify cluster access with:
For organizational pattern management:
- Vector DB service (Qdrant) for pattern storage and semantic search
- Embedding provider API key - Required for semantic pattern matching:
- OpenAI:
OPENAI_API_KEY - Google:
GOOGLE_API_KEY - Amazon Bedrock: AWS credentials via environment variables or
~/.aws/credentials
- OpenAI:
For policy management and governance:
- Vector DB service (Qdrant) for policy storage and semantic search
- Embedding provider API key - Required for semantic policy matching (same options as above)
- Optional: Kyverno installed in cluster for active policy enforcement
Installation
DevOps AI Toolkit is designed to be used through AI development tools via MCP (Model Context Protocol). No direct installation needed - simply configure your AI tool to connect to the MCP server.
Usage
🎯 Recommended: Kubernetes Setup (Full Features) Production-ready deployment with autonomous capability scanning via controller:
Step 0: Create a Kubernetes Cluster (Optional)
Skip this step if you already have a Kubernetes cluster with an ingress controller.
Prerequisites: Install Kind if you don't have it.
Create a Kind cluster with ingress support:
# Create Kind cluster configuration
cat > kind-config.yaml << 'EOF'
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
extraPortMappings:
- containerPort: 80
hostPort: 80
protocol: TCP
- containerPort: 443
hostPort: 443
protocol: TCP
EOF
# Create the cluster
kind create cluster --name dot-ai --config kind-config.yaml
# Install nginx ingress controller for Kind
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/main/deploy/static/provider/kind/deploy.yaml
# Wait for ingress controller to be ready
kubectl wait --namespace ingress-nginx \
--for=condition=ready pod \
--selector=app.kubernetes.io/component=controller \
--timeout=90s
Step 1: Set Environment Variables
export ANTHROPIC_API_KEY="sk-ant-api03-your-key-here"
export OPENAI_API_KEY="sk-proj-your-openai-key-here"
export DOT_AI_AUTH_TOKEN=$(openssl rand -base64 32)
# Ingress class - change to match your ingress controller (traefik, haproxy, etc.)
export INGRESS_CLASS_NAME="nginx"
Step 2: Install via Helm
# Set versions from GitHub packages
export DOT_AI_VERSION="..." # https://github.com/vfarcic/dot-ai/pkgs/container/dot-ai%2Fcharts%2Fdot-ai
export DOT_AI_CONTROLLER_VERSION="..." # https://github.com/vfarcic/dot-ai-controller/pkgs/container/dot-ai-controller%2Fcharts%2Fdot-ai-controller
# Install controller (enables autonomous capability scanning)
helm install dot-ai-controller \
oci://ghcr.io/vfarcic/dot-ai-controller/charts/dot-ai-controller:$DOT_AI_CONTROLLER_VERSION \
--namespace dot-ai --create-namespace --wait
# Install MCP server
helm install dot-ai-mcp oci://ghcr.io/vfarcic/dot-ai/charts/dot-ai:$DOT_AI_VERSION \
--set secrets.anthropic.apiKey="$ANTHROPIC_API_KEY" \
--set secrets.openai.apiKey="$OPENAI_API_KEY" \
--set secrets.auth.token="$DOT_AI_AUTH_TOKEN" \
--set ingress.enabled=true \
--set ingress.className="$INGRESS_CLASS_NAME" \
--set ingress.host="dot-ai.127.0.0.1.nip.io" \
--set controller.enabled=true \
--namespace dot-ai --wait
Step 3: Create MCP Configuration
Create the MCP client configuration file with your auth token:
cat > .mcp.json << EOF
{
"mcpServers": {
"dot-ai": {
"type": "http",
"url": "http://dot-ai.127.0.0.1.nip.io",
"headers": {
"Authorization": "Bearer $DOT_AI_AUTH_TOKEN"
}
}
}
}
EOF
Note: The $DOT_AI_AUTH_TOKEN variable is expanded when creating the file. Make sure you're in the same terminal session where you set the environment variables in Step 1.
Step 4: Start Your MCP Client
claude # or your preferred MCP-enabled AI tool
Verify everything works by asking:
Show dot-ai status
You should see a status report showing all components are healthy.
What you get:
- ✅ Full Features: All capabilities including autonomous scanning via controller
- ✅ Production-Ready: Scalable deployment with proper resource management
- ✅ Automatic Capability Discovery: Controller watches for CRD changes and scans automatically
- ✅ Team Collaboration: Shared MCP server accessible by multiple developers
Full Configuration: See the MCP Setup Guide for advanced configuration options.
Step 5: Start Using Conversational Workflows
Try these example prompts to explore the toolkit:
| What You Want | Example Prompt | Guide |
|---|---|---|
| Scan capabilities | Use controller (recommended) or "Scan my cluster for capabilities" | Capability Management |
| Query cluster | "What databases are running?" | Cluster Query |
| Deploy an app | "I want to deploy a web application" | Recommendation Guide |
| Operate resources | "Scale my database to 3 replicas" | Operations Guide |
| Fix issues | "Something is wrong with my database" | Remediation Guide |
| Create patterns | "Create a pattern for database deployments" | Pattern Management |
| Create policies | "Create a policy requiring resource limits" | Policy Management |
| Setup project | "Help me setup governance files" | Project Setup Guide |
| Use prompts | /dot-ai:prd-create | Prompts Guide |
Next Steps
📖 MCP Setup Guide → - Detailed configuration, troubleshooting, and examples
📖 Complete Tools & Features Reference → - Comprehensive guide to all available tools, workflows, and advanced features