Skip to main content

Quick Start

Get started with DevOps AI Toolkit in minutes - deploy applications, manage policies, and remediate issues using AI-powered Kubernetes workflows through MCP.

For the easiest setup, we recommend installing the complete dot-ai stack which includes all components pre-configured. See the Stack Installation Guide.

Continue below if you want to install components individually (for non-Kubernetes setups or granular control over configuration).

Overview

What it does: DevOps AI Toolkit provides AI-powered Kubernetes deployment, remediation, policy management, and capability discovery through conversational workflows in your MCP-enabled coding agent.

Use when: You want intelligent Kubernetes operations without memorizing commands, need AI-powered troubleshooting, or want to establish governance policies across your cluster.

📖 Full Guide: See MCP Setup Guide for detailed configuration options and Tools Overview for complete feature reference.

Prerequisites

Works without AI keys:

  • Shared prompts library - No API key needed, works with any MCP-enabled coding agent

For AI-powered features (deployment, remediation, patterns, policies, capabilities):

  • AI Model API key - Required for AI analysis and intelligent recommendations
    • Multiple AI models supported - see AI Model Configuration for all options and setup
    • Quick setup: Claude (default) - export ANTHROPIC_API_KEY=your_key_here

For Kubernetes deployment recommendations:

  • kubectl configured with cluster access
    • Verify cluster access with: kubectl get nodes
    • Should show your cluster nodes without authentication errors

For organizational pattern management:

  • Vector DB service (Qdrant) for pattern storage and semantic search
  • Embedding provider API key - Required for semantic pattern matching:
    • OpenAI: OPENAI_API_KEY
    • Google: GOOGLE_API_KEY
    • Amazon Bedrock: AWS credentials via environment variables or ~/.aws/credentials

For policy management and governance:

  • Vector DB service (Qdrant) for policy storage and semantic search
  • Embedding provider API key - Required for semantic policy matching (same options as above)
  • Optional: Kyverno installed in cluster for active policy enforcement

Installation

DevOps AI Toolkit is designed to be used through AI development tools via MCP (Model Context Protocol). No direct installation needed - simply configure your AI tool to connect to the MCP server.

Usage

🎯 Recommended: Kubernetes Setup (Full Features) Production-ready deployment with autonomous capability scanning via controller:

Step 0: Create a Kubernetes Cluster (Optional)

Skip this step if you already have a Kubernetes cluster with an ingress controller.

Prerequisites: Install Kind if you don't have it.

Create a Kind cluster with ingress support:

# Create Kind cluster configuration
cat > kind-config.yaml << 'EOF'
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
extraPortMappings:
- containerPort: 80
hostPort: 80
protocol: TCP
- containerPort: 443
hostPort: 443
protocol: TCP
EOF

# Create the cluster
kind create cluster --name dot-ai --config kind-config.yaml

# Install nginx ingress controller for Kind
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/main/deploy/static/provider/kind/deploy.yaml

# Wait for ingress controller to be ready
kubectl wait --namespace ingress-nginx \
--for=condition=ready pod \
--selector=app.kubernetes.io/component=controller \
--timeout=90s

Step 1: Set Environment Variables

export ANTHROPIC_API_KEY="sk-ant-api03-your-key-here"
export OPENAI_API_KEY="sk-proj-your-openai-key-here"
export DOT_AI_AUTH_TOKEN=$(openssl rand -base64 32)

# Ingress class - change to match your ingress controller (traefik, haproxy, etc.)
export INGRESS_CLASS_NAME="nginx"

Step 2: Install via Helm

# Set versions from GitHub packages
export DOT_AI_VERSION="..." # https://github.com/vfarcic/dot-ai/pkgs/container/dot-ai%2Fcharts%2Fdot-ai
export DOT_AI_CONTROLLER_VERSION="..." # https://github.com/vfarcic/dot-ai-controller/pkgs/container/dot-ai-controller%2Fcharts%2Fdot-ai-controller

# Install controller (enables autonomous capability scanning)
helm install dot-ai-controller \
oci://ghcr.io/vfarcic/dot-ai-controller/charts/dot-ai-controller:$DOT_AI_CONTROLLER_VERSION \
--namespace dot-ai --create-namespace --wait

# Install MCP server
helm install dot-ai-mcp oci://ghcr.io/vfarcic/dot-ai/charts/dot-ai:$DOT_AI_VERSION \
--set secrets.anthropic.apiKey="$ANTHROPIC_API_KEY" \
--set secrets.openai.apiKey="$OPENAI_API_KEY" \
--set secrets.auth.token="$DOT_AI_AUTH_TOKEN" \
--set ingress.enabled=true \
--set ingress.className="$INGRESS_CLASS_NAME" \
--set ingress.host="dot-ai.127.0.0.1.nip.io" \
--set controller.enabled=true \
--namespace dot-ai --wait

Step 3: Create MCP Configuration

Create the MCP client configuration file with your auth token:

cat > .mcp.json << EOF
{
"mcpServers": {
"dot-ai": {
"type": "http",
"url": "http://dot-ai.127.0.0.1.nip.io",
"headers": {
"Authorization": "Bearer $DOT_AI_AUTH_TOKEN"
}
}
}
}
EOF

Note: The $DOT_AI_AUTH_TOKEN variable is expanded when creating the file. Make sure you're in the same terminal session where you set the environment variables in Step 1.

Step 4: Start Your MCP Client

claude  # or your preferred MCP-enabled AI tool

Verify everything works by asking:

Show dot-ai status

You should see a status report showing all components are healthy.

What you get:

  • Full Features: All capabilities including autonomous scanning via controller
  • Production-Ready: Scalable deployment with proper resource management
  • Automatic Capability Discovery: Controller watches for CRD changes and scans automatically
  • Team Collaboration: Shared MCP server accessible by multiple developers

Full Configuration: See the MCP Setup Guide for advanced configuration options.

Step 5: Start Using Conversational Workflows

Try these example prompts to explore the toolkit:

What You WantExample PromptGuide
Scan capabilitiesUse controller (recommended) or "Scan my cluster for capabilities"Capability Management
Query cluster"What databases are running?"Cluster Query
Deploy an app"I want to deploy a web application"Recommendation Guide
Operate resources"Scale my database to 3 replicas"Operations Guide
Fix issues"Something is wrong with my database"Remediation Guide
Create patterns"Create a pattern for database deployments"Pattern Management
Create policies"Create a policy requiring resource limits"Policy Management
Setup project"Help me setup governance files"Project Setup Guide
Use prompts/dot-ai:prd-createPrompts Guide

Next Steps

📖 MCP Setup Guide → - Detailed configuration, troubleshooting, and examples

📖 Complete Tools & Features Reference → - Comprehensive guide to all available tools, workflows, and advanced features